Image of the chip containing detectors such as those used in the experiments. The chip is located on a copper fixture.
Content

1. Scientific results 2013 ... 3
2. Added value of the programme .. 3
3. Personnel ... 4
4. Publications ... 4
 10NQO01 .. 4
 10NQO02 .. 4
 10NQO03-1 .. 4
 10NQO03-2 .. 4
5. Valorisation and outreach .. 5
 Fact sheet as of 1 January 2014 .. 6
 Historical overview of input en output .. 8
 PhD defences .. 8
 Patents (new/changes) ... 8
 Overview of projects and personnel .. 9
 Workgroup FOM-D-41 .. 9
 Workgroup FOM-E-06 ... 9
 Workgroup FOM-L-02 ... 9
 Workgroup FOM-L-31 ... 10
 Group Kuipers .. 10
 Group A.F. Koenderink .. 10
1. Scientific results 2013

The FOM programme 'Nanoscale quantum optics' (NQO) is now in its third year, and significant progress has been made in all parts of the programme, as described below.

The study of spontaneous emission at the nanoscale (Challenge 1) is progressing along two lines: semiconductor quantum dots (QDs) and nitrogen-vacancy (NV) centers in diamond. On the QD side, work at TU/e has resulted in bright emission lines for QDs grown at only 10 nm from an etched surface - an important milestone for their controlled coupling to plasmonic antennas, which is now under investigation. After the ground-breaking demonstration of spin entanglement in NV centers last year (published in Nature), work at TUD has continued towards realizing teleportation between remote single quantum emitters.

Work on stimulated emission at the nanoscale (Challenge 2) has resulted in the first observation of surface plasmon lasing in metal hole arrays by the Leiden group, and published in Phys. Rev. Lett. Moreover, the measured angular dependence of the emission spectra enabled the mapping of the dispersion of the surface plasmons (= plasmonic band structure) and quantifying the (backward and sideward) scattering rate of surface plasmons incident on a sub-wavelength hole. At AMOLF, room-temperature lasing in complementary structures, i.e. periodic arrays of plasmon particles was observed, mediated by in-plane distributed feedback, combined with a strong signature of plasmonic resonances. Lasing was also observed in plasmon lattices that are quasiperiodic, aperiodic, or have correlated disorder, leading to a quest to unravel (Anderson) localized modes in plasmon nanoparticle array lasers.

The investigations on Detection of quantum light at the nanoscale (Challenge 3) are continuing to bring a wealth of results, taking advantage of the combination of the detector tomography methods developed at Leiden and the superconducting nanowire detectors fabricated at TU/e. By a very accurate measurement of the detector's multiphoton response, a 'universal' scaling law has been discovered, which describes the detector's click probability as a function of current and photon energy. The comparison of this scaling law and of its temperature dependence to the existing theoretical models has allowed evidencing the role of quasi-particle diffusion and vortices in the detector's operation (paper in press in Phys. Rev. Lett.). Moreover, the systematic study of detectors with different lengths has revealed an unexpected dependence of the critical current and efficiency on length, which represents a strong evidence of continuously distributed inhomogeneities at the sub-100 nm scale. Together, these results represent perhaps the most significant progress in the understanding of the physics of photodetection in superconducting nanowires in the last few years.

Finally, the activity on Optical nonlinearities at the nanoscale (Challenge 4) has greatly progressed. After the first demonstration of bunching of two single plasmons on-chip (published in Nature Nanotechnology), work at TUD has continued towards the integration of plasmon sources and detectors. At AMOLF clear evidence of second- and third-harmonic generation from plasmonic structures has been obtained. Investigations are currently underway to determine two things. First, is the harmonic radiation generated in a guided mode along the wire and subsequently scattered to the far field, or is it unguided and merely generated locally by a nonlinear interaction of the guided fundamental mode with local geometrical imperfections? Second, what is the role of the geometry of the plasmonic nanowire on the efficiency of the conversion process?

2. Added value of the programme
The NQO programme is strongly contributing to reinforcing the coherence and collaboration between the research programmes of the participating groups in the area of quantum optics. Some examples:

- The groups in Leiden and TU/e have a joint and very successful activity on the characterisation of nanoscale detectors. The collaboration nicely takes advantage of the complementarity of the nanotechnology/nanophotonics expertise in Eindhoven and the quantum optics competence in Leiden. In another NQO-related theme (plasmonic lasers), nanofabrication is realised by a student from Leiden in the TU/e cleanroom, again showing the relevance of this collaboration. Further joint activities in a distinct, but related field (semiconductor quantum optics) are being initiated.
- Several contacts have taken place between TU/e and AMOLF on possible joint programmes in nanophotonics, and a collaboration has been started in the field of optomechanics (Verhagen's and Fiore's groups). A student exchange within the NQO programme (from Fiore's group to Koenderink's group) is planned in 2014.
- Dr. M.P. van Exter (Leiden) spent a sabbatical period in AMOLF in 2012.
- A national workshop in the field of Micro- and Nano-scale Quantum Optics (involving also groups outside NQO) has been organised in Eindhoven in 2013.
- A Lorentz center workshop on 'Nanoscale Quantum Optics' has been organised (De Dood, Wubs, Fiore) and will take place in June 2014.
- Several contacts and collaborations with external groups are taking place, including with Danish Technical University, the Ames lab (Iowa, USA) and the LENS/Univ. Florence.

3. Personnel

All the NQO positions have been filled and the corresponding PhD projects are in good course. Guest visits took place in 2012 (two in AMOLF and one in Delft), and one more is scheduled next year (AMOLF).

4. Publications

10NQO01

10NQO02

10NQO03-1

10NQO03-2
5. Valorisation and outreach

Even though the research carried out in this programme is of fundamental nature, short-term valorisation opportunities are possible in the field of superconducting detectors, where TUD's spin-off Single Quantum is active. Discussions between TU/e, TUD and Single Quantum about possible joint projects are taking place.

The following outreach activities, related to the broad field of optics, have been realised by NQO members in 2013:

- F. Koenderink with Stichting Atelier van Licht: 'Atelier van Licht' exposition at Stedelijk Museum for children (3-8 yrs old) with their parents, from 22 December 2012 to 6 January 2013. Approximately 4900 visitors.
APPROVED FOM PROGRAMME

Number
Title (code)
Executive organisational unit
Programme management
Duration
Cost estimate

Concise programme description

a. Objectives
This programme aims at investigating quantum optical processes on the deep subwavelength scale, that is in structures where the optical field shows strong spatial variations on <100 nm scale, well below the diffraction limit. We will study spontaneous and stimulated light emission, optical detection and optical nonlinearities at the nanoscale and at the single-quantum level.

b. Background, relevance and implementation
The investigation of atom-photon interaction is an important topic in modern physics and represents the basis for virtually all optical technologies. In particular, quantum optics has been an ideal playground for testing the foundations of quantum mechanics as well as novel ideas for quantum information processing using photons. So far, quantum optical experiments have been performed with fields, which are either freely-propagating or confined in optical cavities of the scale of one or few wavelengths, as limited by diffraction. This programme aims at investigating for the first time quantum optical processes on the deep subwavelength scale. At this length scale, the basic assumptions and approximations used to describe radiative processes in the solid-state break down as the field length scales become comparable to excitonic wavefunctions in semiconductor nanostructures. Our fundamental understanding of cavity quantum electrodynamics (QED) is challenged by the polaritonic nature of plasmonic excitations and their ultrashort lifetimes. The dynamic and statistical properties of nanoscale lasers are expected to deviate widely from conventional laser theory due to the ultrafast recombination timescales and extreme field inhomogeneities. Even the basic concept of photon absorption in the near-field has never been addressed experimentally at the single-quantum level. Besides opening novel and intriguing research directions, the peculiar properties of subwavelength fields can be exploited to optimize light-matter coupling or explore new functionalities, for future application in classical and quantum photonics.
This programme will focus on four key challenges, which arise in the investigation of quantum optical effects at the nanoscale:

1. Developing a physical description of spontaneous emission and cavity QED at the nanoscale.
2. Understanding stimulated emission and nanolasers on a deep subwavelength scale.
3. Investigating the subwavelength structure of quantum states of light in the near-field.
4. Studying optical non-linearities at the nanoscale and at the single-quantum level.

Funding
salarispeil cao per 01-07-2012

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FOM-basisexploitatie</td>
<td>1.683</td>
<td>546</td>
<td>282</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.511</td>
</tr>
<tr>
<td>FOM-basisinvesteringen</td>
<td>520</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>520</td>
</tr>
<tr>
<td>Doelsubsidies NWO</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Doelsubsidies derden</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Totaal</td>
<td>2.203</td>
<td>546</td>
<td>282</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.031</td>
</tr>
</tbody>
</table>

Source documents and progress control

a) Original programme proposal: FOM-10.1233
b) Ex ante evaluation: FOM-10.1406
c) Decision Executive Board: FOM-10.1714

Remarks
The final evaluation of this programme will consist of a self-evaluation initiated by the programme leader and is foreseen for 2016.
Historical overview of input en output

<table>
<thead>
<tr>
<th></th>
<th>WP/V</th>
<th>WP/T</th>
<th>PhD</th>
<th>NWP</th>
<th>finances* (in k€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>-</td>
<td>-</td>
<td>2.5</td>
<td>-</td>
<td>344</td>
</tr>
<tr>
<td>2012</td>
<td>-</td>
<td>0.9</td>
<td>7.0</td>
<td>-</td>
<td>561</td>
</tr>
<tr>
<td>2013</td>
<td>-</td>
<td>1.0</td>
<td>8.0</td>
<td>-</td>
<td>650</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PhD theses</th>
<th>refereed publications</th>
<th>other publications & presentations</th>
<th>patents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>2012</td>
<td>-</td>
<td>1</td>
<td>21</td>
<td>-</td>
</tr>
<tr>
<td>2013</td>
<td>-</td>
<td>7</td>
<td>34</td>
<td>-</td>
</tr>
</tbody>
</table>

* After closing the financial year.

PhD defences

2011 None. 2012 None. 2013 None.

Patents (new/changes)

2013 None.
Overview of projects and personnel

Workgroup FOM-D-41

Leader
Prof.dr.ir. L.P. Kouwenhoven

Organisation
Delft University of Technology

Project leader
Dr. V. Zwiller
Prof.dr.ir. R. Hanson

Programme
Nanoscale quantum optics

Project (title + number)
Cooperative and nonlinear optical processes at the nanoscale 10NQO02

FOM employees on this project

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Start date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.J. Hensen</td>
<td>PhD</td>
<td>01 March 2012</td>
<td>29 February 2016</td>
</tr>
<tr>
<td>I. Esmaeil Zadeh</td>
<td>PhD</td>
<td>01 August 2011</td>
<td>31 July 2015</td>
</tr>
</tbody>
</table>

Workgroup FOM-E-06

Leader
Prof.dr. A. Fiore

Organisation
Eindhoven University of Technology

Programme
Nanoscale quantum optics

Project (title + number)
Spontaneous emission and light detection at the nanoscale 10NQO01

FOM employees on this project

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Start date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Cotrufo</td>
<td>PhD</td>
<td>15 October 2012</td>
<td>14 October 2016</td>
</tr>
<tr>
<td>Y. Cho</td>
<td>postdoc</td>
<td>07 February 2012</td>
<td>06 February 2015</td>
</tr>
<tr>
<td>R. Gaudio</td>
<td>PhD</td>
<td>01 November 2011</td>
<td>31 October 2015</td>
</tr>
</tbody>
</table>

Workgroup FOM-L-02

Leader
Prof.dr. E.R. Eliel

Organisation
Leiden University

Project leaders
Dr. M.J.A. de Dood

Programme
Nanoscale quantum optics

Project (title + number)
Quantum optical fields at the nanoscale 10NQO03-2

FOM employees on this project

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Start date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q. Wang</td>
<td>PhD</td>
<td>01 August 2011</td>
<td>31 July 2015</td>
</tr>
</tbody>
</table>
Workgroup FOM-L-31

Leader
Dr. M.P. van Exter

Organisation
Leiden University

Programme
Nanoscale quantum optics

Project (title + number)
Quantum optical fields at the nanoscale 10NQO03-1

FOM employees on this project

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Start date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td>J.J. Renema</td>
<td>PhD</td>
<td>01 February 2011</td>
<td>31 January 2015</td>
</tr>
</tbody>
</table>

Group Kuipers

Leader
Prof.dr. L. Kuipers

Organisation
FOM Institute AMOLF

Programme
Nanoscale quantum optics

Project (title + number)
Singular and nonlinear quantum optics at the nanoscale 10NQO07

FOM employees on this project

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Start date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.K. de Hoogh</td>
<td>PhD</td>
<td>01 September 2011</td>
<td>31 August 2015</td>
</tr>
</tbody>
</table>

Group A.F. Koenderink

Leader
Prof.dr. A.F. Koenderink

Organisation
FOM Institute AMOLF

Programme
Nanoscale quantum optics

Project (title + number)
Spontaneous and stimulated emission in subwavelength plasmon resonators 10NQO04

FOM employees on this project

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Start date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.H. Schokker</td>
<td>PhD</td>
<td>01 October 2011</td>
<td>30 September 2015</td>
</tr>
</tbody>
</table>